1. Breadth-First-Search
BFS(G){
for (each vertex u in V[G] - {s}) {
color[u] = WHITE;
d[u] = ∞;
Pi[u] = NULL;
}
color[s] = GRAY;
d[s] = 0;
Pi[s] = NULL;
ENQUEUE(Q, s);
While (!Q.empty()){
u = DEQUEUE(Q);
for (each vertex v in adj[u]){
color[v] = GRAY;
Pi[v] = u;
d[v] = d[u] + 1;
ENQUEUE(Q, v);
}
color[u] = BLACK;
}
}
2. Depth-First-Search
DFS(G){
for (each vertex u in V[G]){
color[u] = WHITE;
Pi[u] = NULL;
}
time = 0;
for (each vertex u in V[G]){
if (color[u] == WHITE)
DFS-VISIT(u);
}
}
DFS-VISIT(u){
color[u] = GRAY;
time ++;
d[u] = time;
for (each vertex v in adj[u]){
if (color[v] == WHITE){
Pi[v] = u;
DFS-VISIT(v);
}
}
time++;
f[u] = time;
color[u] = BLACK;
}
I need to follow my heart.
Apr 30, 2009
Apr 24, 2009
B-Tree
1. Find key k in Tree T:
B-TREE-SEARCH(x, k){
int i = 1;
while (i <= n[x] && k > keyi[x] )
i++;
if (i <= n[x] && k == keyi[x]) return (x, i); else{ if (leaf[x])
return NIL;
else
return (ci[x], k);
}
}
2. Insert a node in Tree T;
3. Delete a node in Tree T;
B-TREE-SEARCH(x, k){
int i = 1;
while (i <= n[x] && k > keyi[x] )
i++;
if (i <= n[x] && k == keyi[x]) return (x, i); else{ if (leaf[x])
return NIL;
else
return (ci[x], k);
}
}
2. Insert a node in Tree T;
3. Delete a node in Tree T;
Apr 23, 2009
Binary Search Tree
1. Search an element in Tree T:
1)Recursive Method:
TREE-SEARCH(root[T], k){
x = root[T];
if (x == NIL || key[x] == k)
return x;
else{
if (k < key[x])
return TREE-SEARCH(left[x], k);
else
return TREE-SEARCH(right[x], k);
}
}
2)Iterative Method:
ITERATIVE-TREE-SEARCH(root[T], k){
x = root[T];
while (x != NIL && key[x] != k){
if (k < key[x])
x = left[x];
else
x = right[x];
}
return x;
}
2. Find the minimal element in Tree T:
TREE-MINIMUM(root[T]){
x = root[T];
while ( left[x] != NIL)
x = left[x];
return x;
}
3. Find the maximal element in Tree T:
TREE-MAXIMAL(root[T]){
x = root[T];
while (right[x] != NIL)
x = right[x];
return x;
}
4. Find the successor of element x in Tree T:
TREE-SUCCESSOR(x){
if (right[x] != NIL)
return TREE-MINMIAL(right[x]);
else{
y = p[x];
while (y != NIL && x = right[y]){
x = y;
y = p[y];
}
return y;
}
}
1)Recursive Method:
TREE-SEARCH(root[T], k){
x = root[T];
if (x == NIL || key[x] == k)
return x;
else{
if (k < key[x])
return TREE-SEARCH(left[x], k);
else
return TREE-SEARCH(right[x], k);
}
}
2)Iterative Method:
ITERATIVE-TREE-SEARCH(root[T], k){
x = root[T];
while (x != NIL && key[x] != k){
if (k < key[x])
x = left[x];
else
x = right[x];
}
return x;
}
2. Find the minimal element in Tree T:
TREE-MINIMUM(root[T]){
x = root[T];
while ( left[x] != NIL)
x = left[x];
return x;
}
3. Find the maximal element in Tree T:
TREE-MAXIMAL(root[T]){
x = root[T];
while (right[x] != NIL)
x = right[x];
return x;
}
4. Find the successor of element x in Tree T:
TREE-SUCCESSOR(x){
if (right[x] != NIL)
return TREE-MINMIAL(right[x]);
else{
y = p[x];
while (y != NIL && x = right[y]){
x = y;
y = p[y];
}
return y;
}
}
Apr 22, 2009
Team radio transmissions
zz from bbc
In the interest of transparency, full transcripts of the Team radio comms from the Chinese GP have now been made available. Selected quotes.
BMW: "Robert, can you get a close look at that Toyota diffuser?"
Kubica: "How about I bring some of it back with me?"
Kimi: "How many Hamiltons are there? That's the fourth one that's gone past me!"
Williams: "Kazuki. Be careful, the track's really wet now."
Nakajima: "It's okay, I'm not using the track!"
BMW: "Robert, there seems to be a problem with your nose."
Kubica: "Why does everyone have to talk about my nose?"
Ferrari: "Well, as we're not running KERS, at least we won't have any electrical problems!"
Massa: "&$%!!*$!"
McLaren: "Lewis, we're not sure about that last overtaking manoeuvre ... let Kimi past ... let Kimi past!"
Hamilton: "I already have ... several times!"
In the interest of transparency, full transcripts of the Team radio comms from the Chinese GP have now been made available. Selected quotes.
BMW: "Robert, can you get a close look at that Toyota diffuser?"
Kubica: "How about I bring some of it back with me?"
Kimi: "How many Hamiltons are there? That's the fourth one that's gone past me!"
Williams: "Kazuki. Be careful, the track's really wet now."
Nakajima: "It's okay, I'm not using the track!"
BMW: "Robert, there seems to be a problem with your nose."
Kubica: "Why does everyone have to talk about my nose?"
Ferrari: "Well, as we're not running KERS, at least we won't have any electrical problems!"
Massa: "&$%!!*$!"
McLaren: "Lewis, we're not sure about that last overtaking manoeuvre ... let Kimi past ... let Kimi past!"
Hamilton: "I already have ... several times!"
Apr 18, 2009
QUICK-SORT
Input: A(p, r)
QUICK-SORT(A, p, r){
if (p < r){
q = PARTITION(A, p, r);
QUICK-SORT(A, p, q-1);
QUICK-SORT(A, q+1, r);
}
}
Subroutine:
PARTITION(A, p, r){
i = p -1;
x = A[r];
for (j = p; j <= r-1; j++){
if (A[j] <= x){
i++;
exchange(A[i], A[j]);
}
}
exchange(A[i+1], A[r]);
return i+1;
}
Features:
1. T(n) = O(nlgn) ~ O(n2)
2. Sort in place
QUICK-SORT(A, p, r){
if (p < r){
q = PARTITION(A, p, r);
QUICK-SORT(A, p, q-1);
QUICK-SORT(A, q+1, r);
}
}
Subroutine:
PARTITION(A, p, r){
i = p -1;
x = A[r];
for (j = p; j <= r-1; j++){
if (A[j] <= x){
i++;
exchange(A[i], A[j]);
}
}
exchange(A[i+1], A[r]);
return i+1;
}
Features:
1. T(n) = O(nlgn) ~ O(n2)
2. Sort in place
Apr 15, 2009
HEAP-SORT
Input: A[]
Main Algorithm:
HEAP-SORt(A)
{
BUILD-MAX-HEAP(A);
for (int i = length[A]; i >=1; i--)
{
exchange(A[1], A[i]);
heap-size[A]--;
MAX-HEAPIFY(A, 1);
}
}
Subroutines:
BUILD-MAX-HEAP(A)
{
heap-size[A] = length[A];
for (int i = [heap-size[A]/2]; i >= 0; i--)
MAX-HEAPIFY(A, i);
}
MAX-HEAPIFY(A, i)
{
l = 2i;
r = 2i +1;
if (l <= heap-size[A] && A[l] > A[i])
largest = l;
else
largest = i;
if (r <= heap-size[A] && A[r] > A[largest])
largest = r;
if (largest != r)
{
exchange(A[i], A[largest]);
MAX-HEAPIFY(A, largest);
}
}
Main Algorithm:
HEAP-SORt(A)
{
BUILD-MAX-HEAP(A);
for (int i = length[A]; i >=1; i--)
{
exchange(A[1], A[i]);
heap-size[A]--;
MAX-HEAPIFY(A, 1);
}
}
Subroutines:
BUILD-MAX-HEAP(A)
{
heap-size[A] = length[A];
for (int i = [heap-size[A]/2]; i >= 0; i--)
MAX-HEAPIFY(A, i);
}
MAX-HEAPIFY(A, i)
{
l = 2i;
r = 2i +1;
if (l <= heap-size[A] && A[l] > A[i])
largest = l;
else
largest = i;
if (r <= heap-size[A] && A[r] > A[largest])
largest = r;
if (largest != r)
{
exchange(A[i], A[largest]);
MAX-HEAPIFY(A, largest);
}
}
Apr 10, 2009
Bubble Sort
Input: A[]
for (i = 1; i <= length[A]; i++)
    {
         for (j = length[A]; j >=i; j--)
           {
              if (A[j] < A[j-1])
                   Exchange (A[j], A[j -1]);
           }
     }
Features:
1. Stable
for (i = 1; i <= length[A]; i++)
    {
         for (j = length[A]; j >=i; j--)
           {
              if (A[j] < A[j-1])
                   Exchange (A[j], A[j -1]);
           }
     }
Features:
1. Stable
Apr 9, 2009
Merge Sort
Input: A[], p, r, where p < r.
Merge-Sort(A, p, r)
{
if ( p < r )
{
q = [(p + r)/2];
Merge-Sort(A, p, q);
Merge-Sort(A, q, r);
Merge(A, p, q, r);
}
}
Megre(A, p, q, r)
{
n1 = q - p + 1;
n2 = r - q;
for (i = 0; i <= n1; i++)
L[i] = A [p+i];
for (j = 0; j <= n2; j++)
R[j] = A[q+j];
L[n1 +1] = Sentinel;
R[n2 +1] = Sentinel;
i = j = 0;
for (k = p; k <= r; k++)
{
if (L[i] <= R[j])
{
A[k] = L[i];
i++;
}
else
{
A[k] = R[j];
j++;
}
}
}
Features:
1. loop invariant
2. stable
3. T(n) = O(nlgn)
Merge-Sort(A, p, r)
{
if ( p < r )
{
q = [(p + r)/2];
Merge-Sort(A, p, q);
Merge-Sort(A, q, r);
Merge(A, p, q, r);
}
}
Megre(A, p, q, r)
{
n1 = q - p + 1;
n2 = r - q;
for (i = 0; i <= n1; i++)
L[i] = A [p+i];
for (j = 0; j <= n2; j++)
R[j] = A[q+j];
L[n1 +1] = Sentinel;
R[n2 +1] = Sentinel;
i = j = 0;
for (k = p; k <= r; k++)
{
if (L[i] <= R[j])
{
A[k] = L[i];
i++;
}
else
{
A[k] = R[j];
j++;
}
}
}
Features:
1. loop invariant
2. stable
3. T(n) = O(nlgn)
Apr 8, 2009
Insertion Sort
Input: A[1..N], length[A]
for (j=2; j <= length[A]; j++)
{
key = A[j];
i = j-1;
while (A[i] > key && i > 0)
{
A[i+1] = A[i];
i--;
}
A[i+1] = key;
}
Features:
1. sort in place;
2. loop invariant;
3. stable sort;
for (j=2; j <= length[A]; j++)
{
key = A[j];
i = j-1;
while (A[i] > key && i > 0)
{
A[i+1] = A[i];
i--;
}
A[i+1] = key;
}
Features:
1. sort in place;
2. loop invariant;
3. stable sort;
Subscribe to:
Posts (Atom)