I need to follow my heart.

Apr 30, 2009

Breadth-First-Search & Depth-First-Search

1. Breadth-First-Search
BFS(G){
for (each vertex u in V[G] - {s}) {
color[u] = WHITE;
d[u] = ∞;
Pi[u] = NULL;
}
color[s] = GRAY;
d[s] = 0;
Pi[s] = NULL;
ENQUEUE(Q, s);

While (!Q.empty()){
u = DEQUEUE(Q);
for (each vertex v in adj[u]){
color[v] = GRAY;
Pi[v] = u;
d[v] = d[u] + 1;
ENQUEUE(Q, v);
}
color[u] = BLACK;
}
}

2. Depth-First-Search
DFS(G){
for (each vertex u in V[G]){
color[u] = WHITE;
Pi[u] = NULL;
}
time = 0;
for (each vertex u in V[G]){
if (color[u] == WHITE)
DFS-VISIT(u);
}
}

DFS-VISIT(u){
color[u] = GRAY;
time ++;
d[u] = time;
for (each vertex v in adj[u]){
if (color[v] == WHITE){
Pi[v] = u;
DFS-VISIT(v);
}
}
time++;
f[u] = time;
color[u] = BLACK;
}

Apr 24, 2009

B-Tree

1. Find key k in Tree T:
B-TREE-SEARCH(x, k){
int i = 1;
while (i <= n[x] && k > keyi[x] )
i++;
if (i <= n[x] && k == keyi[x]) return (x, i); else{ if (leaf[x])
return NIL;
else
return (ci[x], k);
}
}

2. Insert a node in Tree T;
3. Delete a node in Tree T;

Apr 23, 2009

Binary Search Tree

1. Search an element in Tree T:
1)Recursive Method:
TREE-SEARCH(root[T], k){
x = root[T];
if (x == NIL || key[x] == k)
return x;
else{
if (k < key[x])
return TREE-SEARCH(left[x], k);
else
return TREE-SEARCH(right[x], k);
}
}
2)Iterative Method:
ITERATIVE-TREE-SEARCH(root[T], k){
x = root[T];
while (x != NIL && key[x] != k){
if (k < key[x])
x = left[x];
else
x = right[x];
}
return x;
}

2. Find the minimal element in Tree T:
TREE-MINIMUM(root[T]){
x = root[T];
while ( left[x] != NIL)
x = left[x];
return x;
}

3. Find the maximal element in Tree T:
TREE-MAXIMAL(root[T]){
x = root[T];
while (right[x] != NIL)
x = right[x];
return x;
}

4. Find the successor of element x in Tree T:
TREE-SUCCESSOR(x){
if (right[x] != NIL)
return TREE-MINMIAL(right[x]);
else{
y = p[x];
while (y != NIL && x = right[y]){
x = y;
y = p[y];
}
return y;
}
}

Apr 22, 2009

Team radio transmissions

zz from bbc

In the interest of transparency, full transcripts of the Team radio comms from the Chinese GP have now been made available. Selected quotes.

BMW: "Robert, can you get a close look at that Toyota diffuser?"
Kubica: "How about I bring some of it back with me?"

Kimi: "How many Hamiltons are there? That's the fourth one that's gone past me!"

Williams: "Kazuki. Be careful, the track's really wet now."
Nakajima: "It's okay, I'm not using the track!"

BMW: "Robert, there seems to be a problem with your nose."
Kubica: "Why does everyone have to talk about my nose?"

Ferrari: "Well, as we're not running KERS, at least we won't have any electrical problems!"
Massa: "&$%!!*$!"

McLaren: "Lewis, we're not sure about that last overtaking manoeuvre ... let Kimi past ... let Kimi past!"
Hamilton: "I already have ... several times!"

Apr 18, 2009

QUICK-SORT

Input: A(p, r)

QUICK-SORT(A, p, r){
if (p < r){
q = PARTITION(A, p, r);
QUICK-SORT(A, p, q-1);
QUICK-SORT(A, q+1, r);
}
}

Subroutine:
PARTITION(A, p, r){
i = p -1;
x = A[r];
for (j = p; j <= r-1; j++){
if (A[j] <= x){
i++;
exchange(A[i], A[j]);
}
}
exchange(A[i+1], A[r]);
return i+1;
}

Features:
1. T(n) = O(nlgn) ~ O(n2)
2. Sort in place

Apr 15, 2009

HEAP-SORT

Input: A[]

Main Algorithm:
HEAP-SORt(A)
{
BUILD-MAX-HEAP(A);
for (int i = length[A]; i >=1; i--)
{
exchange(A[1], A[i]);
heap-size[A]--;
MAX-HEAPIFY(A, 1);
}
}

Subroutines:
BUILD-MAX-HEAP(A)
{
heap-size[A] = length[A];
for (int i = [heap-size[A]/2]; i >= 0; i--)
MAX-HEAPIFY(A, i);
}

MAX-HEAPIFY(A, i)
{
l = 2i;
r = 2i +1;
if (l <= heap-size[A] && A[l] > A[i])
largest = l;
else
largest = i;
if (r <= heap-size[A] && A[r] > A[largest])
largest = r;
if (largest != r)
{
exchange(A[i], A[largest]);
MAX-HEAPIFY(A, largest);
}
}

Apr 10, 2009

Bubble Sort

Input: A[]

for (i = 1; i <= length[A]; i++)
    {
         for (j = length[A]; j >=i; j--)
           {
              if (A[j] < A[j-1])
                   Exchange (A[j], A[j -1]);
           }
     }

Features:
1. Stable

Apr 9, 2009

Merge Sort

Input: A[], p, r, where p < r.

Merge-Sort(A, p, r)
{
if ( p < r )
{
q = [(p + r)/2];
Merge-Sort(A, p, q);
Merge-Sort(A, q, r);
Merge(A, p, q, r);
}
}

Megre(A, p, q, r)
{
n1 = q - p + 1;
n2 = r - q;
for (i = 0; i <= n1; i++)
L[i] = A [p+i];
for (j = 0; j <= n2; j++)
R[j] = A[q+j];
L[n1 +1] = Sentinel;
R[n2 +1] = Sentinel;
i = j = 0;
for (k = p; k <= r; k++)
{
if (L[i] <= R[j])
{
A[k] = L[i];
i++;
}
else
{
A[k] = R[j];
j++;
}
}
}

Features:
1. loop invariant
2. stable
3. T(n) = O(nlgn)

Apr 8, 2009

Insertion Sort

Input: A[1..N], length[A]

for (j=2; j <= length[A]; j++)
{
key = A[j];
i = j-1;
while (A[i] > key && i > 0)
{
A[i+1] = A[i];
i--;
}
A[i+1] = key;
}

Features:
1. sort in place;
2. loop invariant;
3. stable sort;